If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=Y^2-14Y+44
We move all terms to the left:
-(Y^2-14Y+44)=0
We get rid of parentheses
-Y^2+14Y-44=0
We add all the numbers together, and all the variables
-1Y^2+14Y-44=0
a = -1; b = 14; c = -44;
Δ = b2-4ac
Δ = 142-4·(-1)·(-44)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{5}}{2*-1}=\frac{-14-2\sqrt{5}}{-2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{5}}{2*-1}=\frac{-14+2\sqrt{5}}{-2} $
| (-20)(-3)(.04)=x | | 5/8/x=8 | | 0.04x-0.09=5.16 | | -5+7x+6=8(x+2)-3 | | 3x=x3 | | 45x/7=3 | | 4x-1=2x+15=8x+8 | | -3y-6=y+30 | | -6(x+8)=-66 | | 4e-3=e+21 | | x2−4x+3=0 | | (a+8)^1/2-2=(a-4)^1/2 | | 4x²+98=0 | | 4x-1=+2x+15=8x+8 | | 8.4/x=7/5 | | 19x=x(x-3) | | 72-14d=36 | | 12(5+2y)=4y-(6-9y | | -16+8y+(-3)=-19 | | 7x+11=109 | | 15−x5=−25 | | x+8*9=0 | | 25c^2+10=125-5c | | -4+7x+6=8(x+3)-5 | | c=5/9(149-32 | | -108=3x+3(3x-16 | | 34x+6=15 | | 3x=3+1/2x | | -4x+19=-5 | | 35x−65=−3 | | -4-7x+6=8(x+3)-5 | | 3,3+x=⅝ |